Agent-based Modeling Capability for Integrated CNS-NAS Simulation

Goutam Satapathy
goutam@i-a-i.com, 301 294 5249
Vikram Manikonda
vikram@i-a-i.com, 301 294 5245

Distributed Intelligent Systems
Intelligent Automation Inc
7519 Standish Place, Suite 200
Rockville, MD 20855
www.i-a-i.com

Contents

- What is CNS Modeling?
- Why Agent-based CNS Modeling?
- Modeling of CNS Entities as Agents
 - Communication
 - Navigation
 - Surveillance
- Modeling CNS Functionality at the Agent Infrastructure Level
- Summary

Why CNS Modeling?

- Communication Systems
 - What is the delay between source and sink in a network or a set of networks under different characteristic conditions, such as
 - Number of nodes
 - □ Traffic
 - □ Transmission medium
 - □ Protocol
- Navigation Systems
 - What is the accuracy of navigational information when using hybrid systems (GPS and VOR/DME) under conditions such as:
 - □ Loss of signals (signal jamming)
 - ☐ Drifts and clock drifts (in case of GPS)
- Surveillance Systems
 - What is accuracy of state information in using different systems due to
 - □ Delay
 - □ Radar malfunction
 - □ Signal interference

Why Agent-based CNS Modeling?

- An agent-based design is characterized by software that
 - Encapsulates local state
 - Independent execution
 - Message and event driven behavior. Agents interact with the world and with other agents by communicating through some well defined set of messages, events and protocols
- Implementation of a Message-based communication approach "mimics" real world communications between "entities" modeled as agents
- Separation of the messaging scheme from "business logic" enable one to incorporate CNS models into software with minimal code rewrite
- Mixed -fidelity modeling of CNS aspect

Why Agent-based CNS Modeling?

- Can leverage existing Agent-based simulation software such as ACES enabling an integrated approach to studying the impact of CNS aspects on performance.
- Can now address questions such as
 - What is the impact of the CNS infrastructure on the performance of a new Airspace concept?
 - What aspects of the concept need to be addressed to ensure robust performance under a given CNS architecture?
 - Given a particular concept, what is the impact of different CNS infrastructures on the performance of the NAS?
 - What are the limitations, (in terms of bandwidth, delays etc) of the CNS infrastructure as flight demand increases, security overlays are introduced?
 - What are the impacts on safety in the event of CNS failures?

Why Agent-based CNS Modeling?

An agent-based simulation approach provides the ideal test-bed environment to perform both pure simulation and hardware-in the loop experiments

Contents

- What is CNS Modeling?
- Why Agent-based CNS Modeling?
- Modeling of CNS Entities as Agents
 - Communication
 - Navigation
 - Surveillance
- Modeling CNS Functionality at the Agent Infrastructure Level
- Summary

Agent Communication

(Self Separation between ADSB and non-ADSB Flights)

Controller Agent

Flight/Pilot Agent of non-ADS-B-equipped flight

Communication System Modeling

There is a finite amount of delay between the time when a message is issued and when it is received

Different Types of Delays in a Communication Node

- Processing delay
 - The time taken to encode voice or data into packets
 - The time taken to examine the header
- Queue delay
 - The time spent by packets in a queue waiting to be transmitted by data-link layer of OSI model
- Transmission delay
 - Delay depends on packet length and transmission rate (10Mbps or 100Mbps)
 - Affected by flow control, collision and multiple access channel (for wireless network) protocols
- Propagation delay
 - Depends on the distance between nodes and the medium (fiber, radio etc.)

Agents & Activities in Communication System Model

- A node, router or transceiver is an agent
- Each agent has at least three activities introducing different delays in the message delivery
 - The total simulated delay reflects the time taken by a node to forward a packet to the next node since it received the packet

Delay Modeling

Network Activity

- For a router, a constant delay is introduced that is proportional to the time taken examining the header and placing the packet in a queue
- For a source node, delay is computed based on data size and type of encoding used
- For a sink node, delay is computed based on time taken in decoding and compiling all packets

Data-link Activity

- Uses collision, flow control and MAC models to compute variable transmission delay
- The models take traffic volume into consideration
- The queue delay occurs due to finite transmission service time

Physical Activity

 Adds a constant delay based on the medium and distance between the nodes

End-to-End Delay in the Network

As a result of all the cumulative delays, the packet reaches a receiving application at a simulation time that is different than the simulation time at which packet is sent by another application

Impact of Agent-based Delay Model on NAS

- Pilot agent receives a Controller directive after elapse of a simulated time
- A direct correlation between degradation of a particular communication system on the NAS safety and throughput can be established
- Allows hardware-in-loop simulation for validating modeling accuracy

IAI's Agent-based Ad-Hoc Network Simulation

Contents

- What is CNS Modeling?
- Why Agent-based CNS Modeling?
- Modeling of CNS Entities as Agents
 - Communication
 - Navigation
 - Surveillance
- Modeling CNS Functionality at the Agent Infrastructure Level
- Summary

Ground-based Navigation (VOR/DME, VORTAC)

- What impacts navigation
 - Line of sight requirement
 - Error in calibrated delay
 - Atmospheric conditions

Slant Distance = $C(T - \delta)/2$

C =Light velocity

T =Elapsed time

 δ = Response delay

Space-based navigation (GPS)

- What impacts navigation
 - Drift (satellite & clock)
 - Signal loss (jamming)
 - Atmospheric conditions

Agent-based Modeling of GPS Navigation

- GPS Agent
 - Activity broadcasting drift and location
- Flight Agent
 - Activity computing pseudeoranges for SE
- Stationary Transceiver Agent
 - Activity broadcasting differential corrections

Contents

- What is CNS Modeling?
- Why Agent-based CNS Modeling?
- Modeling of CNS Entities as Agents
 - Communication
 - Navigation
 - Surveillance
- Modeling CNS Functionality at the Agent Infrastructure Level
- Summary

Surveillance Systems

- Primary Radar
 - Atmospheric (signal) attenuation
 - Weather
 - Range
- Secondary Radar
 - Signal loss in response
 - Response delay
- ADS-B
 - Communication delay
- TIS-B
 - Communication delay
 - Signal loss

Surveillance System Modeling for Self Separation Concept – A Schematic

- The location of non-ADSB equipped flight as gathered by SSR is fed to ADSB equipped flight after the elapse of finite time – delay
- The delay attributed due to SSR, Communication network and TIS-B transponder can be modeled using agents
 - SSR and transponders need to be modeled as agents
 - Atmospheric attenuation/error models can be developed for SSR to add location uncertainty
 - Delay models for each agent can be developed to add location correction

Communication delay

Contents

- What is CNS Modeling?
- Why Agent-based CNS Modeling?
- Modeling of CNS Entities as Agents
 - Communication
 - Navigation
 - Surveillance
- Modeling CNS Functionality at the Agent Infrastructure Level
- Summary

CNS Modeling within Agent Infrastructure

Cybele-HLA as Agent Infrastructure for ACES Simulation

Pros and Cons of Agent Infrastructure Support for CNS

- Advantages (compared to CNS entities modeled as agents)
 - NAS simulation and model development need not be coupled with CNS modeling
 - Mostly well suited for communication systems where number of agents tend to be large
- Disadvantages (compared to CNS entities modeled as agents)
 - Inability to easily introduce new models as development at the infrastructure level tends to be significantly more complex
 - Can impact efforts that require hardware in the loop simulation

Summary

- An integrated approach to modeling and simulation that considers both NAS domain models and the underlying CNS infrastructure is needed to truly evaluate new concepts and new CNS architectures together
- Future efforts need to carefully evaluate the two approaches and investigate tradeoffs between them
 - Modeling of CNS entities as agents
 - Support for CNS models at the infrastructure
- Adopting a hybrid approach
- Data collection and metrics for evaluating performance of the CNS architectures in the context of NAS need to be investigated